
3.1.4 First-Order Logic Formulas and Classification

⤷First-order language
 A first-order language is a symbolic language used to express

statements in first-order logic. Well-formed formulas are its
constructed expressions, used to precisely express complex statements
about objects and their relationships.

Definition 3.1: The alphabet of a first-order language is defined as
follows:
(1) Individual constants: a,b,c,…,ai,bi,ci,…, where i≥1
(2) Individual variables: x,y,z,…,xi,yi,zi,…, where i≥1
(3) Function symbols: f,g,h,…,fi,gi,hi,…, where i≥1
(4) Predicate symbols: F,G,H,…,Fi,Gi,Hi,…, where i≥1
(5) Quantifier symbols: ∀,∃
(6) Connective symbols: ¬,∧,∨,→,↔
(7) Parentheses and commas: () , ,

3.1.4 First-Order Logic Formulas and Classification

⤷Terms and atomic formulas of first-order logic
Definition 3.2：The definition of terms in a first-order language is

as follows:

(1) Individual constants and individual variables are terms.

(2) If φ(x1,x2,…,xn) is an arbitrary n-ary function symbol,
and t1,t2,…,tn are arbitrary terms, then φ(t1,t2,…,tn) is also a
term.

(3) All terms are obtained through a finite number of applications of
(1) and (2).

Definition 3.3: Let R(x1,x2,…,xn) be an arbitrary n-ary predicate
symbol in a first-order language, and let t1,t2,…,tn be arbitrary
terms. Then, R(t1,t2,…,tn) is called an atomic formula.

3.1.4 First-Order Logic Formulas and Classification

⤷Well-formed formula (predicate formulas or formulas.)
Definition 3.4：Well-formed formulas in a first-order language are

defined as follows:

(1) Atomic formulas are well-formed formulas.

(2) If A is a well-formed formula, then ¬A is also a well-formed formula.

(3) If A and B are well-formed formulas, then (A∧B), (A∨B), (A→B),
and (A↔B) are also well-formed formulas.

(4) If A is a well-formed formula, then ∀xA and ∃xA are also well-
formed formulas.

(5) Only those expressions formed by a finite application of rules (1)
through (4) are considered well-formed formulas.

Well-formed formulas are also referred to as predicate formulas or
simply formulas.

3.1.4 First-Order Logic Formulas and Classification

⤷Bound Variable and Bound Occurrences
Definition 3.5: In the formulas ∀xA and ∃A, x is called the bound

variable (or binder), and A is the scope of the respective
quantifier. In the scope of ∀x and ∃x , all occurrences of x are
called bound occurrences. Variables in A that are not bound
occurrences are called free occurrences.

Example: The formula ∀x(F(x,y)→∃yG(x,y,z))
• The scope of ∀x is (F(x,y)→∃yG(x,y,z)), with x as the bound

variable. Both occurrences of x are bound occurrences.
• The scope of ∃y is G(x,y,z), with y as the bound variable.
• The first occurrence of y is a free occurrence, and the second

occurrence is a bound occurrence.
• z is a free occurrence.

e.g.

3.1.4 First-Order Logic Formulas and Classification

⤷Closed well-formed formula(closed formula)

Example: The formula ∀x(F(x)→∃xG(x))

• The scope of ∀x is (F(x)→∃xG(x)), with x as the bound variable.

• The scope of ∃x is G(x), with x as the bound variable.

• Both occurrences of x are bound occurrences: the first in ∀x , and
the second in ∃x.

Closed formula: A formula that contains no free occurrences of
individual variables is called a closed well-formed formula,
abbreviated as closed formula.

e.g.

3.1.4 First-Order Logic Formulas and Classification

⤷Interpretation, assignment, and quantification of formulas

A formula is merely a framework of logical expressions. To
evaluate its truth value, the following tasks must be completed:

(1) Interpretation: Assign specific (semantic) meaning to this
framework.

(2) Assignment: Under a given interpretation, assign values to the
free variables in the formula.

(3) Quantification: Eliminate the free variables so that the truth
value of the formula no longer depends on specific assignments
but is determined by the overall situation of all possible
assignments.

3.1.4 First-Order Logic Formulas and Classification

⤷Interpretation, assignment, and quantification of formulas(e.g.)

Example: Formula ∀x(F(x) → G(x))
Specification1: Domain: All individuals. F(x): x is a person. G(x): x is Asian.

This formula translates to "For all x, if x is a person, then x is Asian." This is
a false statement because not all people are Asian.

Specification 2: Domain: The set of real numbers. F(x): x > 10. G(x): x > 0.
This formula translates to "For all x, if x > 10, then x > 0." This is a true
statement because any number greater than 10 is also greater than 0.
Example: Formula ∃xF(x,y)

Specification:Domain: The set of natural numbers. F(x,y): x = y. y = 0.
Since x,y both belong to the set of natural numbers N, for any y∈N, there
exists an x=y such that the equation holds. Therefore, the statement is
always true.

e.g.

e.g.

3.1.4 First-Order Logic Formulas and Classification

⤷Interpretation, assignment, and quantification of formulas(e.g.)

Example: Given the interpretation I and assignment σ as follows :
① Definition D=N ; ② �𝒂𝒂 = 𝟎𝟎 ; ③ �𝒇𝒇 𝒙𝒙,𝒚𝒚) = 𝒙𝒙 + 𝒚𝒚, �𝒈𝒈 𝒙𝒙,𝒚𝒚 = 𝒙𝒙𝒚𝒚 ;
④ �𝑭𝑭 𝒙𝒙,𝒚𝒚 :𝒙𝒙 = 𝒚𝒚. Value σ: σ(x)=0, σ(y)=1, σ(z)=2.
Explain the meaning of the following formula under interpretation I and
assignment σ, and discuss its truth value.

(1) ∀xF(g(x,a),y): ∀x(0x=1) False
(2) ∀x∀y(F(f(x,a),y)→F(f(y,a),x)) Truth

f(x,a)=x,f(y,a)=y, ∀x∀y(F(x,y)→F(y,x)), (x=y)→(y=x)

(3) ∀x∀y∃zF(f(x,y),z) x∀y∃z (x+y=z) Truth
(4) ∃xF(f(x,y),g(x,z)) ∃x(x+1=2x) Truth
(5) F(f(x,a), g(y,a)) x+0=1×0 Truth
(6) ∀x(F(x,y)→∃yF(f(x,a), g(y,a))) ∀x(x=1→∃y(x+2=2y)) False

e.g.

3.1.4 First-Order Logic Formulas and Classification

⤷Classification of first-order Logic formulas
Tautology (logically valid formula): no false interpretation and

assignment.

Contradiction (contravalid formula): no true interpretation and
assignment.

 Satisfiable formula: at least one true interpretation and
assignment.

• A tautology is a satisfiable formula, but the converse is not true.
• In first-order logic, the satisfiability (tautology, contradiction) of

a formula is undecidable, meaning there is no algorithm that
can determine in finite steps whether a given formula is
satisfiable (a tautology, a contradiction).

i

3.1.4 First-Order Logic Formulas and Classification

⤷Substitution instance of a propositional formula
Definition 3.6： Let A0 be a propositional formula containing

propositional variables p1,p2,…,pn, and let A1,A2,…,An be predicate
formulas. The formula A, obtained by uniformly replacing
each pi (for 1≤i≤n) in A0 with Ai, is called a substitution
instance of A0.

• Such as: F(x)→G(x) and ∀xF(x)→∃yG(y) are substitution instances
of p→q.

Theorem 3.2: All substitution instances of a tautology are logically
valid, and all substitution instances of a contradiction are
contradictions.

3.1.4 First-Order Logic Formulas and Classification

⤷Classification of first-order Logic formulas(e.g.)
Example: Determine the type of the following formula:

(1) ∀x(F(x)→G(x))

I1: D1=R, �𝑭𝑭 𝒙𝒙 : x integer, �𝑮𝑮 𝒙𝒙 : x is rational. (1) is a true proposition.

I2: D2=R, �𝑭𝑭 𝒙𝒙 : x integer, �𝑮𝑮 𝒙𝒙 : x is natural number. (1) is a false
proposition. (1) is a satisfiable formula (not logically valid formula).

(2) ¬(∀xF(x,y))∨(∀xF(x,y)) ,

¬p∨p substitution instances , ¬p∨p tautology, (2) is a tautology.

(3) ¬ (∀xF(x)→∃yG(y)) ∧ ∃yG(y),

¬(p→q)∧q substitution instances, ¬(p→q)∧q contradiction, (3) is a
contradiction.

e.g.

3.1.4 First-Order Logic Formulas and Classification

⤷Classification of first-order Logic formulas(e.g.)
Example: Determine the type of the following formula:

(4) ∀xF(x,y)

I1: D1=N, �𝑭𝑭 𝒙𝒙,𝒚𝒚 : x ≥ y, Assign σ(y)=0.

(4) is a true proposition.

I2: D2=N,�𝑭𝑭 𝒙𝒙,𝒚𝒚 : x ≥ y, Assign σ(y)=1.

(4) is a false proposition.

(4) is a satisfiable formula (not logically valid formula).

e.g.

3.1 Basic Concepts of First-Order Logic• Brief summary

Objective :

Key Concepts ：

Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

Chapter 3： First Order Logic

 3.1 Basic Concepts of First-Order Logic

 3.2 Equivalence Calculus of First-Order Logic

3.2 Equivalence Calculus of First-Order Logic

3.2.1 First-Order Logic Equivalences and Substitution Rules
Basic Equivalences Substitution Rules, Renaming Rules

3.2.2 Prenex normal form of first-order logic

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Review of Basic Equivalence Expressions

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Review of Basic Equivalence Expressions (cont.)

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Tautology A↔B vs. Equivalence A ⇔ B

Definition 3.7: If A↔B is a tautology (a valid formula),
then A and B are called equivalent, denoted by A ⇔ B, and A
B is referred to as an equivalence.

There are 24 propositional basic equivalences and their
substitution examples, all of which are equivalences in first-
order logic.

 For example:

∀xF(x)→∃yG(y) ⇔ ¬∀xF(x)∨∃yG(y)

¬(∀xF(x)∨∃yG(y)) ⇔ ¬∀xF(x)∧¬∃yG(y) and so on

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Quantifier Elimination Equivalences

Quantifier Elimination Equivalences: To transform logical
expressions to remove quantifiers (∃, ∀), yielding an equivalent
quantifier-free form.

• Let D={a1,a2,…,an}

∀xA(x)⇔A(a1)∧A(a2)∧…∧A(an)

∃xA(x)⇔A(a1)∨A(a2)∨…∨A(an)

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Quantifier Negation Equivalences

Quantifier Negation Equivalences: To convert quantifiers (∀
and ∃) and negation (¬), changing the scope of the negation
without altering the logical meaning.

• Let A(x) be a formula in which x appears freely.

¬∀xA(x)⇔ ∃x ¬A(x)
¬ ∃xA(x)⇔∀x ¬A(x)

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Quantifier Negation Equivalences

Quantifier Distribution Equivalences:To allocate or
restructure quantifiers (∀, ∃) to interact correctly with
logical operations (∧, ∨, →) while preserving logical
equivalence.
• ∀x(A(x)∧B(x))⇔∀xA(x)∧∀xB(x)
∃x(A(x)∨B(x))⇔∃xA(x)∨∃xB(x)

Attention：∀ to ∨，∃ to ∧ no Quantifier Distribution
Equivalences.

i

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Quantifier scope reduction and expansion equivalences

 Quantifier scope reduction and expansion equivalences：To
adjust the scope of quantifiers (∀, ∃) while preserving logical
equivalence.

• Let A(x) be a formula in which x appears freely, and let B be a
formula in which x does not appear.

Universal quantifier Existential quantifier

∀x(A(x)∨B)⇔∀xA(x)∨B ∃x(A(x)∨B)⇔∃xA(x)∨B

∀x(A(x)∧B)⇔∀xA(x)∧B ∃x(A(x)∧B)⇔∃xA(x)∧B

∀x(A(x)→B)⇔∃xA(x)→B ∃x(A(x)→B)⇔∀xA(x)→B

∀x(B→A(x))⇔B→∀xA(x) ∃x(B→A(x))⇔B→∃xA(x)

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Substitution and Renaming Rules

Substitution Rule：
Let Φ(A) be a formula containing formula A, and Φ(B)
be the formula obtained by replacing all occurrences of
A in Φ(A) with formula B. Then, Φ(A) ⇔ Φ(B).
Renaming Rule：

In a formula A, change the bound variables (and their
occurrences within the scope of the quantifier) of a
quantifier to an individual term that has not appeared
within the scope of that quantifier. The rest of the
formula remains unchanged, and the resulting formula is
denoted as A'. Then, A' ⇔ A.

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Substitution and Renaming Rules

Note:
(1) Substitution can be used to transform expressions and find

equivalent forms of expression.

(2) Renaming can eliminate variable name conflicts and clarify
the scope of quantifiers.

(3) When substituting, the replaced terms should not become
variables within the scope of some quantifier.

(4) When renaming, only the variable names bound by
quantifiers are changed, and the rest of the formula
structure remains unchanged.

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Renaming Rules(e.g.)

Example: Eliminate the individual variables that appear both in the
constraints and as free variables in the equation.

(1) ∀xF(x,y,z) → ∃yG(x,y,z)

⇔ ∀uF(u,y,z) → ∃yG(x,y,z)

⇔ ∀uF(u,y,z) → ∃vG(x,v,z) （Renaming Rule Equivalence)

Avoid variable confusion and improve expression readability and
consistency.

(2) ∀x(F(x,y) → ∃yG(x,y,z))

⇔ ∀x(F(x,y) → ∃tG(x,t,z)) （Renaming Rule Equivalence）

Only changed the bound variable name of the existential quantifier y.

e.g.

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Quantifier scope reduction and expansion equivalences(e.g.)

Example: Let the domain of individuals be D={a,b,c}, eliminate the
quantifiers in the following formula:

(1) ∀x(F(x)→G(x))

⇔ (F(a)→G(a))∧(F(b)→G(b))∧(F(c)→G(c))

(2) ∀x(F(x)∨∃yG(y))

⇔ ∀xF(x)∨∃yG(y) （ Quantifier scope reduction ）

⇔(F(a)∧F(b)∧F(c))∨(G(a)∨G(b)∨G(c))

(3) ∃x∀yF(x,y)

⇔ ∃x(F(x,a)∧F(x,b)∧F(x,c))

⇔ (F(a,a)∧F(a,b)∧F(a,c))∨(F(b,a)∧F(b,b)∧F(b,c))
∨(F(c,a)∧F(c,b)∧F(c,c))

e.g.

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Quantifier scope reduction and expansion equivalences(e.g.)

Example： Given I: (a) D={2,3}, (b)�𝒇𝒇: �𝒇𝒇 𝟐𝟐 = 𝟑𝟑, �𝒇𝒇 𝟑𝟑 = 𝟐𝟐,

(c) �𝑭𝑭 𝒙𝒙 : x is even, �G 𝒙𝒙, y : x=2 ∨ y=2, �𝑳𝑳 𝒙𝒙, y : x=y.

Solve the true value under I:

(1) ∃x(F(f(x))∧G(x, f(x)))

Solve: (F(f(2))∧G(2, f(2)))∨(F(f(3))∧G(3, f(3)))

⇔ (1∧1)∨(0∧1) ⇔ 1

(2) ∃x∀yL(x,y)

Solve: ∀yL(2,y)∨∀yL(3,y)

⇔ (L(2,2)∧L(2,3))∨(L(3,2)∧L(3,3))

⇔ (1∧0)∨(0∧1) ⇔ 0

e.g.

3.2.1 First-Order Logic Equivalences and Substitution Rules
⤷ Prove the equivalence using transformation rules (e.g.)

Example： Prove the following equivalence:

¬ ∃x(M(x)∧F(x)) ⇔ ∀x(M(x)→ ¬F(x))

Prove:

Left ⇔ ∀x ¬(M(x)∧F(x)) （De Morgan's laws for quantifiers）

⇔ ∀x(¬M(x)∨¬F(x))

⇔ ∀x(M(x)→ ¬F(x))

The proof applies three key logical transformation rules:

quantifier negation, De Morgan’s laws, and implication
equivalence.

e.g.

i

3.2 Equivalence Calculus of First-Order Logic

3.2.1 First-Order Logic Equivalences and Substitution Rules
Basic Equivalences Substitution Rules, Renaming Rules

3.2.2 Prenex normal form of first-order logic

3.2.2 Prenex normal form of first-order logic

⤷ Prenex normal form

Definition 3.8: Let A be a first-order logic formula. If A has the form

Q1x1Q2x2…Qkxk B

where each Qi is either ∀ or ∃ (for 1≤i≤k), and B is a formula without

quantifiers, then A is called a prenex normal form.

Examples:

∀x∃y(F(x)→(G(y)∧H(x,y))) (prenex normal form)

∀x¬(F(x)∧G(x)) (prenex normal form)

∀x(F(x)→∃y(G(y)∧H(x,y))) (not prenex normal form)

¬∃x(F(x)∧G(x)) (not prenex normal form)

e.g.

3.2 Equivalence Calculus of First-Order Logic • Brief summary

Objective :

Key Concepts ：

Chapter 3： First Order Logic • Brief summary

Objective :

Key Concepts ：

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	�Discrete Mathematics 2025 Spring�
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33

